4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:主营:抑制剂、激动剂、API
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > Small_molecule > Medchemexpress/DHEA(同义词:反式脱氢雄甾酮;普拉甾酮;脱氢异雄甾酮;脱氢表雄酮)/HY-14650
商品详细Medchemexpress/DHEA(同义词:反式脱氢雄甾酮;普拉甾酮;脱氢异雄甾酮;脱氢表雄酮)/HY-14650
Medchemexpress/DHEA(同义词:反式脱氢雄甾酮;普拉甾酮;脱氢异雄甾酮;脱氢表雄酮)/HY-14650
Medchemexpress/DHEA(同义词:反式脱氢雄甾酮;普拉甾酮;脱氢异雄甾酮;脱氢表雄酮)/HY-14650
商品编号: HY-14650-10mM*1mLinDMSO
品牌: MedChemExp
市场价: ¥1320.00
美元价: 792.00
产地: 美国(厂家直采)
公司:
产品分类: 小分子
公司分类: Small_molecule
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍
DHEA is an important source of androgens, and is an effective antiapoptotic factor.
Description

DHEA is an important source of androgens, and is an effective antiapoptotic factor.

IC50 & Target

Androgen receptor[1]

In Vitro

DHEA is an effective antiapoptotic factor, reversing the serum deprivation-induced apoptosis in prostate cancer cells (DU145 and LNCaP cell lines) as well as in colon cancer cells (Caco2 cell line). DHEA significantly reduces serum deprivation-induced apoptosis in all 3 cancer cell types, quantitated with the APOPercentage assay (apoptosis is reduced from 0.587±0.053 to 0.142±0.0016 or 0.059±0.002 after treatment for 12 hours with DHEA or NGF, respectively; n=3, P<0.01), and="" by="" flow="" cytometry="" analysis="" (facs)="" for="" du145="" cells.="" the="" antiapoptotic="" effect="" of="" dhea="" is="" dose="" dependent="" with="" an="" ec50="" at="" nanomolar="" concentrations="">50: 11.2±3.6 nM and 12.4±2.2 nM in DU145 and Caco2 cells, respectively)[1]. DHEA is the principal sex steroid precursor in humans and can be converted directly to androgens. DHEA (≥1 μM) causes a dose-dependent inhibition of Chub-S7 proliferation, as assessed by thymidine incorporation assays. DHEA treatment inhibits expression of the key glucocorticoid-regulating genes H6PDH (≥100 nM) and HSD11B1 (≥1 μM) in differentiating preadipocytes in a dose-dependent manner. In keeping with this finding, DHEA treatment (≥1 μM) results in a marked reduction in 11β-HSD1 oxoreductase activity (≥1 μM) and a concurrent increase in dehydrogenase activity at the highest DHEA dose used (25 μM DHEA) in differentiated adipocytes[2].

In Vivo

DHEA in the diet (0.45 % w/w) of male B6 mice (groups of five mice) treated for 8 weeks led to significant decreases in body temperature compared with mice fed the control AIN-76A diet. A similar comparison indicated that control and pair-fed mice are also significantly different. Animals fed DHEA have significantly lower temperatures than mice fed the control diet 26/29 times tested; mice pair fed to those on the DHEA diet are less affected, with 8/29 values significantly lower than in mice fed AIN-76A ad libitum. The temperatures of mice fed DHEA or pair fed to DHEA are significantly different 21/29 times tested. Body weights are significantly greater in mice fed the control diet than in mice fed DHEA or pair fed to DHEA. Food intake (grams per day) from cages are averaged for each week (n=7), except for Week 9 (n=3). The amount of food intake is significantly decreased in mice fed DHEA. By design, mice pair fed to DHEA ate about the same amount. Thus, it appears that DHEA reduces body temperature by food restriction and by a separate mechanism[3].

References
  • [1]. Anagnostopoulou V, et al. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology. 2013 Jul;154(7):2446-56.

    [2]. McNelis JC, et al. Dehydroepiandrosterone exerts anti-glucocorticoid action on human preadipocyte proliferation, differentiation and glucose uptake. Am J Physiol Endocrinol Metab. 2013 Nov 1;305(9):E1134-44.

    [3]. Catalina F, et al. Decrease of core body temperature in mice by dehydroepiandrosterone. Exp Biol Med (Maywood). 2002 Jun;227(6):382-8.

Preparing Stock Solutions
Concentration Volume Mass 1 mg 5 mg 10 mg
1 mM 3.4672 mL 17.3358 mL 34.6717 mL
5 mM 0.6934 mL 3.4672 mL 6.9343 mL
10 mM 0.3467 mL 1.7336 mL 3.4672 mL
Please refer to the solubility information to select the appropriate solvent.
Kinase Assay
[2]

Chub-S7 cells are incubated in DMEM containing cold DHEA (20 nM) and tritiated DHEA (0.2 μCi/well) for 48 h. Following incubation, steroids are extracted using dichloromethane separated by thin-layer chromatography using n-hexane/1-hexanol (75:25) as the mobile phase system. Metabolites are identified by comigration with unlabeled reference steroids that are visualized by exposure to Lieberman-Burchard reagent (ethanol-acetic anhydride-sulfuric acid). Steroid conversion is quantified using a LabLogic AR-200 scanner. Protein concentration is measured using a colorimetric 96-well plate assay and used to normalize conversion. Activity is expressed as percent conversion[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay
[2]

DHEA is dissolved in DMSO and stored, and then diluted with appropriate medium before use[2].

Chub-S7 preadipocytes and human primary preadipocytes are seeded into a 24-well plate at densities 1×105 and 2.5×105 respectively. Following overnight culture, medium is supplemented with DHEA, androstenediol, or DHEAS (0-100 μM). Following 24-, 48-, or 72 h incubation, cell proliferation is assessed by incubation with radiolabeled thymidine (0.2 μCi/well) for the final 6 h of culture. Proteins are precipitated with TCA, and cells are scraped in NaOH. The respective content of radiolabeled nuclear material in the resulting lysates is analyzed by scintillation counting. Data are expressed as percentage of control[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[3]

DHEA is prepared in 0.9% NaCl (Mice)[3].

Mice[3]
Mice are fed Purina Lab Chow until the start of experiments (Day 0). Groups of five mice are then fed pelleted AIN-76A diet containing either no additive or DHEA (0.45% w/w) between 0900 and 1000 hr. Diets are stored at 4°C for no longer than six months to maintain optimal activity. Mice are given the diets ad libitum, except for mice that are pair fed to mice treated with DHEA. The amounts of AIN-76A diet the pair-fed mice received are determined by the weight of food consumed by the DHEA-fed mice on a daily basis. Body weights (grams) are measured at different time points starting at Day 1 and ending at Day 59. Daily food intakes (grams per day) are determined by weighing the food consumed per cage of five mice. The mean±SEM values are calculated for weeks 1 to 8 (n=7); week 9 had only 3 days. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References
  • [1]. Anagnostopoulou V, et al. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology. 2013 Jul;154(7):2446-56.

    [2]. McNelis JC, et al. Dehydroepiandrosterone exerts anti-glucocorticoid action on human preadipocyte proliferation, differentiation and glucose uptake. Am J Physiol Endocrinol Metab. 2013 Nov 1;305(9):E1134-44.

    [3]. Catalina F, et al. Decrease of core body temperature in mice by dehydroepiandrosterone. Exp Biol Med (Maywood). 2002 Jun;227(6):382-8.

Molecular Weight

288.42

Formula

C₁₉H₂₈O₂

CAS No.

53-43-0

Storage
Powder -20°C 3 years
  4°C 2 years
In solvent -80°C 6 months
  -20°C 1 month
Shipping

Room temperature in continental US; may vary elsewhere

Solvent & Solubility

10 mM in DMSO

* "<1 mg/ml"="" means="" slightly="" soluble="" or="" insoluble.="" "≥"="" means="" soluble,="" but="" saturation="">

Purity: >98.0%

Data Sheet (136 KB) SDS (389 KB)

COA (94 KB) HNMR (176 KB)

Handling Instructions (1252 KB)
  • [1]. Anagnostopoulou V, et al. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology. 2013 Jul;154(7):2446-56.

    [2]. McNelis JC, et al. Dehydroepiandrosterone exerts anti-glucocorticoid action on human preadipocyte proliferation, differentiation and glucose uptake. Am J Physiol Endocrinol Metab. 2013 Nov 1;305(9):E1134-44.

    [3]. Catalina F, et al. Decrease of core body temperature in mice by dehydroepiandrosterone. Exp Biol Med (Maywood). 2002 Jun;227(6):382-8.

品牌介绍
托烷司琼临床评价药物相关作用适应症托烷司琼CAS号:89565-68-4英文名称:Tropisetron英文同义词:icf205-930;TROPICACID;TROPISETRON;SS-TROPISETRON;BETA-TROPISETRON;Tropisetron(ICS205930);TROPISHTRONHYDROCHLORIDE;Indole-3-carbonylchloride;3-Tropanylindole-3-carboxylate;lαH,5Αh-Tropan-3α-ylindole-3-carboxylate中文名称:托烷司琼中文同义词:托普西隆;托普西龙;曲匹西龙;托烷司琼;Β-托烷司琼;CS-348;Β-内托烷司琼;吲哚-3-甲酰氯;Β-托烷司琼(光学异构体);Β-托烷司琼,托烷司琼异构体CBNumber:CB3236404分子式:C17H20N2O2分子量:284.35MOLFile:89565-68-4.mol化学性质安全信息用途供应商112化学性质安全信息用途供应商112托烷司琼化学性质熔点:201-202°C沸点:448.5±35.0°C(Predicted)密度:1.26储存条件:2-8°C溶解度:H2O:soluble形态:solid酸度系数(pKa):15.38±0.30(Predicted)颜色:whiteCAS数据库:Chemicalbook89565-68-4(CASDataBaseReference)安全信息WGKGermany:3托烷司琼化学药品说明书托烷司琼|药物应用信息托烷司琼性质、用途与生产工艺临床评价Sorbe等报道本品对含顺铂(剂量50~89mg/m2)化疗方案引起的急性呕吐完全控制率为63%。58例恶性肿瘤化疗所致恶心、呕吐者,应用托烷司琼或昂丹司琼8mg分别在同一病人前后2个化疗周期的第1d给药前30min静脉注射,并用地塞米松10mg静脉滴注。结果两药控制急性及迟发性恶心、呕吐的疗效基本相似,均可达81%~100%。本品对强致吐化疗药物顺铂的止吐疗效突出。药物相关作用饮食可略为延长本品的吸收。本品与利福平、苯巴比妥等肝酶诱导药同时使用,可加快代谢,故快代谢型者需增加剂量,慢者则不必。西咪替丁等肝酶抑制药对本品血药浓度无明显影响。适应症托烷司琼临床用于预防和治疗癌症化疗引起的恶心和呕吐。化学性质结晶,熔点201-202℃(二氯甲烷-乙酸乙酯)。单盐酸托烷司琼(TropisetronMonohydroehloride):C17H20N2O2?HCI。[105826-92-4]。熔点283-285℃(分解)。用途有高效性和选择性的5-HT3受体拮抗剂。用于化疗所致的呕吐。用途为5-羟色胺拮抗药生产方法托品醇(I)和酰氯(Ⅱ)反应,可得托烷司琼。托烷司琼上下游产品信息上游原料托品醇下游产品